Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(30): 20257-20269, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30039138

RESUMO

In this report we present a systematic structural and magnetic analysis of Co-doped ZnO nanoparticles prepared via a microwave-assisted hydrothermal route. The structural data confirm the incorporation of Co ions into the wurtzite ZnO lattice and a Co concentration mainly near/at the surface of the nanoparticles. This Co spatial distribution is set to passivate the surface of the ZnO nanoparticles, inhibiting the nanoparticle growth and suppressing the observation of a ferromagnetic phase. Based on experimental and theoretical results we propose a kinetic-thermodynamic model for the processes of nucleation and growth of the Co-doped ZnO nanoparticles, and attribute the observed ferromagnetic order to a ferromagnetism associated with specific defects and adsorbed elements at the surface of the nanoparticle. Our findings give valuable contribution to the understanding of both the doping process at the nanoscale and the nature of the magnetic properties of the Co-doped ZnO system.

2.
J Mol Model ; 23(4): 140, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28361442

RESUMO

The quantum theory of atoms in molecules (QTAIM) and density functional theory (DFT) calculations were employed to investigate the structure and tautomeric equilibrium of epiclusianone, a polyisoprenylated benzophenone with interesting biological activities. Two different exchange-correlation functionals were employed, namely ωB97x-D and M06-2x, including implicit solvent models (benzene and DMSO). Our results for the thermodynamic properties show that the isomer in which the H atom is bonded to the oxygen away from the benzene ring is the most stable tautomer form of the epiclusianone, thus confirming previous charge density analysis from X-ray diffraction data (Martins et al. J Braz Chem Soc 18(8):1515-1523, 22).

3.
J Chem Phys ; 146(3): 034702, 2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28109219

RESUMO

Using first-principles calculations based on density-functional theory (DFT), we investigated the effects of the van der Waals (vdW) interactions on the structural and electronic properties of anthracene and pentacene adsorbed on the Ag(111) surface. We found that the inclusion of vdW corrections strongly affects the binding of both anthracene/Ag(111) and pentacene/Ag(111), yielding adsorption heights and energies more consistent with the experimental results than standard DFT calculations with generalized gradient approximation (GGA). For anthracene/Ag(111) the effect of the vdW interactions is even more dramatic: we found that "pure" DFT-GGA calculations (without including vdW corrections) result in preference for a tilted configuration, in contrast to the experimental observations of flat-lying adsorption; including vdW corrections, on the other hand, alters the binding geometry of anthracene/Ag(111), favoring the flat configuration. The electronic structure obtained using a self-consistent vdW scheme was found to be nearly indistinguishable from the conventional DFT electronic structure once the correct vdW geometry is employed for these physisorbed systems. Moreover, we show that a vdW correction scheme based on a hybrid functional DFT calculation (HSE) results in an improved description of the highest occupied molecular level of the adsorbed molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...